Construction of Vascular Tissues with Macro-Porous Nano-Fibrous Scaffolds and Smooth Muscle Cells Enriched from Differentiated Embryonic Stem Cells
نویسندگان
چکیده
Vascular smooth muscle cells (SMCs) have been broadly used for constructing tissue-engineered blood vessels. However, the availability of mature SMCs from donors or patients is very limited. Derivation of SMCs by differentiating embryonic stem cells (ESCs) has been reported, but not widely utilized in vascular tissue engineering due to low induction efficiency and, hence, low SMC purity. To address these problems, SMCs were enriched from retinoic acid induced mouse ESCs with LacZ genetic labeling under the control of SM22α promoter as the positive sorting marker in the present study. The sorted SMCs were characterized and then cultured on three-dimensional macro-porous nano-fibrous scaffolds in vitro or implanted subcutaneously into nude mice after being seeded on the scaffolds. Our data showed that the LacZ staining, which reflected the corresponding SMC marker SM22α expression level, was efficient as a positive selection marker to dramatically enrich SMCs and eliminate other cell types. After the sorted cells were seeded into the three-dimensional nano-fibrous scaffolds, continuous retinoic acid treatment further enhanced the SMC marker gene expression level while inhibited pluripotent maker gene expression level during the in vitro culture. Meanwhile, after being implanted subcutaneously into nude mice, the implanted cells maintained the positive LacZ staining within the constructs and no teratoma formation was observed. In conclusion, our results demonstrated the potential of SMCs derived from ESCs as a promising cell source for therapeutic vascular tissue engineering and disease model applications.
منابع مشابه
Investigation of Differentiated Embryonic Stem Cells Growth on Optimized Porous Polymeric Bed with Fuzzy System
Introduction: Age-related macular degeneration (AMD) is one of the retina diseases in which retinal pigment epithelium cells are degraded and lead to blindness. Available treatments only slow down the progression of it. In this study, human embryonic stem cells (hESCs) differentiated into retinal pigment epithelium cells were cultured on a polycaprolactone scaffold. Methods: The optimization o...
متن کاملEffect of Nanoclay Addition on the Properties of Polycaprolactone Nanocomposite Scaffolds Containing Adipose Derived Mesenchymal Stem Cells used in Soft Tissue Engineering
Tissue-engineering scaffolds provide biological and mechanical frameworks for cell adhesion, growth, and differentiation. Nanofibrous scaffolds mimic the native extracellular matrix (ECM) and play a significant role in formation and remodeling of tissues and/or organs . One way to mimic the desired properties of fibrous ECM is adding nanoparticles into the polymer matrix. In the current study, ...
متن کاملApplications of Cell Therapy in Vascular Surgery
Trying to use embryonic stem cells about 20 years ago, working with animals, especially rats began. During these years , many experiments in mouse embryonic stem cells to transform into a variety of cells and transplanting them were led to remarkable success . In the next issue of human stem cells were considered successful until finally in 1998 the first report was published in the proliferat...
متن کاملسلولهای بنیادین، پیشرفتها و کاربردها در پزشکی بالینی
Stem cells are undifferentiated and multi pluripotent cells which can differentiate into a variety of mature cells and tissues such as nervous tissue, muscle tissue, epithelial tissue, skeletal tissue and etc. Stem cells from all different source have three unique features: 1) Proliferative capability: Stem cells are capable of self dividing and self renewing for long periods or more than six m...
متن کاملFacts about Stem Cells and Importance of Them
Stem cells are undifferentiated biological cells that can differentiate into specialized cells and can divide (through mitosis) to produce more stem cells. They are found in multicellular organisms. In mammals, there are two broad types of stem cells: embryonic stem cells, which are isolated from the inner cell mass of blastocysts, and adult stem cells, which are found in various tissues. In ad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012